Factoring Safety into your Exercise Plan
By Stephen R. Larson

Physical activity is any movement of the body or a part of the body caused by contractions of muscles. Exercise is a specific type of physical activity that is planned to improve or maintain aerobic condition, strength, balance or flexibility. In short, to improve both mental and physical health. However, some individuals sustain preventable injuries and infections in the process of exercising. Exercises can be performed at home or at a gym. Exercises can be performed indoors or outdoors. Exercises can involve machines or be performed with no machines. In 2008, the federal government issued recommendations that adults engage in exercise for 30 minutes at least 5 days per week to maintain basic health. For persons who want to lose body weight, some recommend doubling this time from 150 minutes to 300 minutes.

For some individuals, exercising at home is not an option because of space, proximity to neighbors and other factors. For these individuals, the gym is the only option for exercising using machines. The most common exercise machines in the gym are the treadmill, the elliptical trainer, the stationary cycle, the weight machines and the rowing machines. These devices are typically commercial quality and constructed of stronger and more durable materials. Injuries caused by defective exercise machines occur due to poor and infrequent maintenance and are not common.

Are communicable disease a risk in the gym?
In March 2012, Dr. Ryan (U. Florida) reported that no Methicillin-resistant staphylococcus aureus (MRSA) bacteria were isolated from 240 samples of surfaces of exercise equipment. It is not clear from the scientific literature that one individual has been infected with MRSA at a gym either from contact with contaminated exercise equipment or while using the locker-room to change from street clothes to exercise clothes and performing personal functions such as a showering.

However, the gym industry in the US is valued at $20 billion per year. The threat of infection may adversely affect the decision to use a gym for exercise.

In response to this concern, firms have been organized such as Zero-Blast Germ Exterminators based in Dallas TX. This firm will sample facility and equipment surfaces to determine if cleaning and disinfection practices reduce the bacterial concentration to some “safe” level. This and other firms use a device invented in 1971 to detect bacteria on distant planets such as Mars. Adenosine triphosphate or ATP is any energy storage molecule that exists in all living cells: microbial, plant and animal. It is also exists in both living and dead cells. By mixing materials scraped or rubbed off surfaces, it is possible to measure the number of cells or bacteria by the amount of light produced by a chemical reaction that uses ATP.

The most common exercise machines in the home are the same as the gym. In 2005, 33% of exercisers used a treadmill with 6% using either a stationary cycle or an elliptical trainer. It is also exists in both living and dead cells. By mixing materials scraped or rubbed off surfaces, it is possible to measure the number of cells or bacteria by the amount of light produced by a chemical reaction that uses ATP.

The most common exercise machines in the gym are the treadmill, the elliptical trainer, the stationary cycle, the weight machines and the rowing machines. These devices are typically commercial quality and constructed of stronger and more durable materials. Injuries caused by defective exercise machines occur due to poor and infrequent maintenance and are not common.

Are communicable disease a risk in the gym?
In March 2012, Dr. Ryan (U. Florida) reported that no Methicillin-resistant staphylococcus aureus (MRSA) bacteria were isolated from 240 samples of surfaces of exercise equipment. It is not clear from the scientific literature that one individual has been infected with MRSA at a gym either from contact with contaminated exercise equipment or while using the locker-room to change from street clothes to exercise clothes and performing personal functions such as a showering.

However, the gym industry in the US is valued at $20 billion per year. The threat of infection may adversely affect the decision to use a gym for exercise.

In response to this concern, firms have been organized such as Zero-Blast Germ Exterminators based in Dallas TX. This firm will sample facility and equipment surfaces to determine if cleaning and disinfection practices reduce the bacterial concentration to some “safe” level. This and other firms use a device invented in 1971 to detect bacteria on distant planets such as Mars. Adenosine triphosphate or ATP is any energy storage molecule that exists in all living cells: microbial, plant and animal. It is also exists in both living and dead cells. By mixing materials scraped or rubbed off surfaces, it is possible to measure the number of cells or bacteria by the amount of light produced by a chemical reaction that uses ATP.

The most common exercise machines in the gym are the treadmill, the elliptical trainer, the stationary cycle, the weight machines and the rowing machines. These devices are typically commercial quality and constructed of stronger and more durable materials. Injuries caused by defective exercise machines occur due to poor and infrequent maintenance and are not common.
Criminal Charges Filed Against Principal Investigator in the UCLA Case
By Kathryn C. Craig

On December 27, 2011 the Los Angeles County District Attorney’s Office filed charges against the University of California Regents and UCLA chemistry professor Patrick Harran for felony violations of California labor laws in the death of a 23-year-old, Sheharbano (Sheri) Sangji, chemistry research assistant. These charges were filed 3 days before the statute of limitation was set to expire. Harran and the UC Board of Regents will be arraigned March 2012. If convicted Harran faces up to four-and-a-half years in prison and the university faces fines of as much as $4.5 million dollars.

Because Sangji was an employee rather than a graduate student, Cal/OSHA investigated the incident; as a result of the investigation Cal/OHSA fined the university $31,875. The agency cited UCLA for lack of training; failure to document training; failing to correct unsafe laboratory conditions and work practices identified in an Oct. 30, 2008 EHS inspection of Harran’s lab; and failing to ensure that employees wore appropriate personal protective equipment (PPE), such as lab coats.

The investigation revealed that Harran was aware that his employees did not customarily wear lab coats. Furthermore, investigators determined that Sangji was not following proper procedures due to a lack of basic training and specific chemical safety training.

The CAL/OSHA report provides insight into the chain of events that lead to her death. On the day of the accident, December 29, 2008, she was using a syringe to remove tert-butyl lithium (tBuLi), a pyrophoric chemical that ignites spontaneously in air, from a container. For unknown reasons, the syringe plunger came out of the barrel and the tBuLi was exposed to the atmosphere. Although it wasn’t part of her experiment, an open flask of hexane was also in the hood and Sangji knocked it over. The tBuLi ignited and the solvent also caught fire. The reagent and solvent spilled onto her torso and hands. The synthetic sweater she wore caught fire and melted onto her skin. She was wearing nitrile gloves, no lab coat, and no one remembers if she was wearing eye protection. Although there was a safety shower in the lab, Sangji did not use it. She ran towards the exit of the lab. Weifend Chen, a post-doctoral researcher in Harran’s group, came in to clean up one of the lab benches, wrapped a lab coat around Sangji to try to put out the fire. “She was screaming and was moving around and I was attempting to wrap her tightly,” Chen told Cal/OSHA investigators. Chen abandoned the lab coat when it started burning. He then started pouring water on Sangji from a nearby sink, while she sat on the floor. She suffered extensive burns over nearly half her body, and died from her burns 18 days later, on January 16, 2009.

Professor Harron told CAL/OSHA his lab followed Aldrich Technical Bulletin AL-134 for handling air-sensitive reagents. This document recommends using a 1 to 2 foot long needle. Sangji’s needle was 2 inches. Harran stated that Sangji was trained by one of his post-docs. CAL/OSHA investigated the past experience of this post doc and found they had limited experience with tBuLi; the post-doc admitted he’d never read the Aldrich bulletin and the procedures he used when handling tBuLi were contrary to those outlined in the bulletin. They also investigated purchasing records and determined that a lab coat was never purchased for Sangji.

UCLA and Harran claim that Sangji was an “experienced published chemist.” She received her BS in chemistry 7 months early and had 2 positions before going to work for UCLA in October 2008. CAL/OSHA interviewed her previous employers, undergraduate professors and found out she had no previous experience working with pyrophoric chemicals.

Two months before the accident an internal UCLA EHS lab inspection found more than a dozen deficiencies in Harran’s lab: employees not wearing requisite protective lab coats and flammable liquids and volatile chemicals stored improperly. The report directed that the problems be fixed by 12/5.
cont. Criminal Charges Filed Against Principal Investigator in the UCLA Case

The District Attorney’s charges specifically cite regulations involving failure to correct unsafe workplace conditions and procedures in a timely manner, failure to require appropriate clothing and personal protective equipment, and failure to provide chemical safety training to employees. The three fundamental lab safety controls all fell short in this instance.

1) Administrative rules and policies: personnel should receive general safety and job specific training to ensure the individual knows how to respond if and when something goes wrong.

2) Engineering equipment: providing the right tools and knowing how to use them: functional safety showers and fume hoods. Fume hoods should have useable work area free from clutter and flammable materials.

3) Personal protective equipment: lab coats, gloves and eye protection should always be worn.

This case emphasizes the importance of developing not just a good training program, but a culture where people actually pay attention to safety — not just, “Yeah, I got my annual training and I’m done.”

Frontline supervisors have been held accountable for employee’s actions in private industry, however Harron is the first professor to be charged this way. As society changes we are being held to higher standards. This case could change the way we view the responsibilities of professors and the board of directors in academia.

A recommended set-up for syringing tert-butyllithium includes inert gas supply and venting to a bubbler, as well as a glass syringe. http://cen.acs.org

Machine Tool Safety
By Shaun W. Savage

It has been nearly one year since the academic community learned of the untimely death of a Yale undergraduate student. While working alone in a science laboratory shop one evening, the student was killed when her hair accidentally became entangled in a lathe. The cause of death was asphyxia due to compression of the neck. The accident was believed to be easily preventable if basic safety measures had been applied.

As with many highly publicized accidents, it provides an opportunity to evaluate safety measures aimed at preventing a similar event. Tufts University has machines and tools such as lathes, drill presses, and table saws. The University understands that such equipment is critical to various functions; however, working safely with this equipment should not be overlooked. Prior to using such equipment, it is critical that staff, faculty, and students are familiar with safe work practices. Examples include using machine guards, wearing personal protective equipment, and working with a partner or colleague. Despite these examples being standard practice for most machine and tool use, various pieces of equipment are more complex. As a result, prior to beginning work, the manufacturer’s operating instructions should be reviewed and consultation with designated staff, faculty, or Tufts Environmental Health and Safety Staff (TEHS) should be performed. In addition, the Occupational Safety and Health Administration (OSHA), offers an eTool with general information. The link is located at: http://www.osha.gov/SLTC/etools/machiningguarded/index.html

As mentioned, there is a variety of machines and tools that if used incorrectly can cause harm. Learn from the unfortunate accident at Yale, and utilize the resources available to you prior to beginning work.

“there is a variety of machines and tools that if used incorrectly can cause harm.”

A manual metal lathe located in the Bray Laboratory Building machine shop is similar to the machine that killed Yale senior Michele Dufault on April 12. freeeRepublic.com
Old Laboratory Chemicals – A Hazardous Waste
By Christopher Rock

In our laboratories we often come across a collection of old chemicals that have been saved and subsequently forgotten; sometimes as a result of a purge by a newly appointed Facility member, lab manager, the retirement of an academic, investigators saving chemicals due to replacement costs, or projects that have run their lifecycle that did not dispose of the chemicals in the end. Consequences of these chemicals being left behind can be in any state of deterioration or breakdown and is sometimes extremely dangerous. For example: Picric acid coming in contact with metal forming metal picrates creating a highly unstable explosive or expired Ether forming shock sensitive and explosive peroxides. It is essential that these lost and older chemicals need to be located, identified, and removed from the laboratory. Moreover, if the old containers are unlabeled (fallen off or mixtures in other unlabeled containers) and unknowns our waste contractor will be required to categorize, test and possibly stabilize the chemicals onsite before removal from the laboratory adding significant shipping, disposal costs and degree of hazard. These chemical should never be moved to the Main Accumulation Waste Area until they have been properly identified. However, the Principal Investigator and/or the laboratory staff can provide essential information into identifying the unknown’s that translates into regulatory compliance (29 CFR 1910.1450.), safety and significant cost reduction. Effective laboratory chemical and chemical waste management is an ongoing daily effort by all laboratory staff and requires constant attention supported by well articulated and communicated procedures through training, chemical inventorying, inspections and supervision. Any new experiment, process or chemical that enters the lab should be evaluated to ensure safe handling, storage, and waste removal. TEHS is available to provide guidance and assistance.

Does Tufts University have a Workplace Injury and Illness Prevention Plan (I2P2)?
By Stephen R. L arson

Yes and No. Although it is not yet required by regulation, Tufts Environmental Health and Safety (TEHS) is drafting an I2P2 as part of our annual audit of the Tufts Workplace Safety and Health Program. In January 2012, two reports were issued about I2P2. The first report release by Occupational Safety and Health Administration (OSHA) was a white paper which stated that workplace health and safety in the U.S. would improve if every business developed and implemented a written health and safety program called I2P2. This is a simple document that identifies the responsibility, authority and accountability for identifying hazards in the workplace and taking actions to minimize or eliminate those hazards. In short, this means to “find and fix threats to worker health and safety.” A second report was issued by the RAND Corp. that reported on the effectiveness of the I2P2 regulation that has been law in California for 21 years. The authors of this study state that the I2P2 regulation has failed to improve worker safety in that state. OSHA has been attempting without success to develop and implement a regulation requiring all employers to write an I2P2 since 1989. In December 2011, OSHA again identified the I2P2 regulations as one of five goals for 2012. On its face, the findings of the RAND study provide opponents of I2P2 with additional evidence. However, a more careful review finds that it is ineffective not because of the overall concept but because employers fail to perform certain critical tasks:
- Identify hazards in the workplace
- Implement controls to reduce or eliminate the hazard
- Collect and analyze information on each accident and incident that occurs
- Provide training and technical support to supervisors and employees who enable each to understand the hazards of their job and the methods available to reduce or eliminate those hazards

Many of the faculty, managers, and supervisors at Tufts are well aware of the hazards of the work they supervise and work with each employee to implement protective measures. In addition to the informal training provided by supervisors, Tufts EHS offers over 20 safety training programs to faculty, staff and students.

Working with Tufts Workers Compensation, the Public and Environmental Safety staff investigates all incidents and accidents that occur on the Tufts campuses and off campus as well. In summary, Tufts University will implement good practices that improve the health and safety of the campus community, whether required by regulation or not.

TEHS offers over 20 safety training programs to faculty, staff and students.

IN CASE YOU HAVEN’T “HERD”
Chemical Management at Tufts: Less is Better
By Peter Kelly-Joseph

As a leading research university with an expanding research profile and capacity, Tufts institutional research dollars have increased by 80% in the last 10 years. Given Tufts academic strengths in science and engineering, chemicals are essential to research and teaching; and use has increased to support additional research.

There are challenges to managing chemicals at Tufts that few other academic institutions face due to our three campuses and decentralized science and engineering facilities.

However, reducing the amount of chemicals used in research and teaching when possible is good for everyone at Tufts:

- The total cost of a chemical is not just the purchase price but also the storage cost, disposal cost, and cleanup costs in the event of a spill.
- Researchers often find that they are disposing of partially empty, out of date, unusable chemical leftovers from an over-purchase.
- Purchasing small amounts and smaller containers of chemicals saves money on the initial costs, disposal costs, lowers the risk of accidents and regulatory issues, and furthers Tufts’ sustainability goal of reducing waste.

Current disposal costs for 55 gallon lab pack containing approximately 15 gallons of chemicals:

<table>
<thead>
<tr>
<th>Estimated Cost of Disposal</th>
<th>Size</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab pack for incineration</td>
<td>55 gallons</td>
<td>1</td>
<td>$295</td>
</tr>
<tr>
<td>Environmental Professional</td>
<td></td>
<td></td>
<td>$28</td>
</tr>
<tr>
<td>Transportation & Insurance</td>
<td></td>
<td></td>
<td>$347</td>
</tr>
<tr>
<td>Estimated Project total</td>
<td></td>
<td></td>
<td>$670</td>
</tr>
</tbody>
</table>

Tufts Environmental Health and Safety (TEHS) is partnering with the Office of Sustainability and Tufts Recycles! to distribute “Less is Better: Laboratory Chemical Management for Waste Reduction” to the approximately 300 teaching and research labs at Tufts.

While “Less is Better” was published in 1996, you might be surprised to learn that the relevance of the information inside has not changed: ordering smaller quantities, effectively tracking current inventory, implementing chemical exchanges, and recycling of unopened or partially used containers are still the most effective ways to reduce waste and increase safety in labs.

There will always be ways to improve the best practices of chemical management and TEHS is proud to assist all departments at Tufts develop procedures to buy less, store less, and dispose of less. Please contact TEHS and we will be happy to help you interpret and implement the advice from “Less is Better” in your lab.

If you have additional ideas on how to reduce waste (chemical and physical) in laboratories, please share them with the Tufts Campus Sustainability Council at http://bit.ly/xJ8BvQ.
Indoor Air Quality and the Limits of Testing
By Peter J. Nowak

Indoor Air Quality (IAQ) has been a topic that has been front and center in the news for nearly 2 decades. Modern construction techniques, as well as the concerns to make buildings much more energy efficient, has led to an increase in complaints of so-called “sick buildings,” as well as advancements in the science of investigating and finding solutions for these issues. IAQ can cover a wide range of concerns to make buildings much more energy efficient, has been a topic that has been front and center in the news for nearly 2 decades. Modern construction techniques, as well as advancements in the science of investigating and finding solutions for these issues. IAQ can cover a wide range of issues from odors, to heating and cooling, high and low temperature, moisture and dryness. These problems most often occur in older buildings, but can also be found in new construction. Tufts Environmental Health and Safety (TEHS), along with our partners in Facilities Services, has been investigating problems for many years. Over that time, the technology has improved and our understanding has led to quicker resolutions of many of these problems. The most common question encountered when we are informed of an IAQ concern is: Can you test our indoor air quality? There is no magic wand. One technique, or instrument alone, is not capable of getting all answers. As advanced as this science currently is, there are significant limitations. If someone states, “there is a bad smell,” no instrument exists that can identify a single odor. We may be able to narrow it down by the process of elimination, but we cannot find the answer without a complete investigation. Moisture, especially in older buildings, is often the source of many IAQ related problems. Some examples of IAQ issues that can be identified and resolved once the source of the moisture has been located and repaired are mold trapped behind a wall, a musty odor in a basement/office space, and mushrooms growing near a baseboard or carpet. As a general rule, Tufts does not test for mold if it is visible at all. The reason is that all mold is treated with the same method: disinfect the area, remove the source of moisture, and repair any damage by replacing any material contaminated with the mold. When mold is suspected from a hidden source, the techniques to identify it get a little more complicated. One method is to test the air, but that includes comparing the samples with outside air, because mold spores are found in all environments. IAQ investigations involve many different things. Looking at the building history, interviewing occupants, visual searches, and the final method is by using available instruments to sample where and where necessary. Even with all of this, sometimes the answer eludes the best investigators. If you are concerned about indoor air quality, the first call should be to Facilities Services on your campus. If they are unable to resolve the concern, then TEHS will become involved and work closely with them to find an answer.

External Radiation Dosimetry
By Geoffrey C. Sirr, Jr.

Dosimetric methods are used to evaluate external radiation dose to assigned areas or individuals while handling radioactive materials or working with radiation producing machines. External dosimetry services are implemented by Radiation Safety staff, and exposure assessment is performed using dosimeters that are supplied and processed by an accredited outside vendor. The Radiation Safety Officer or designee is responsible for assigning personnel to the external radiation dosimetry program. Any person on the Boston, Medford or Grafton Campus may request to be assigned a dosimeter. However, routine radiation exposure monitoring may not be necessary or required per regulation for personnel that work in laboratories permitted for radioactive materials or radiation emitting machines. Personnel dosimetry assignment is based upon the likelihood to exceed 10% of the regulatory radiation limit or when working with quantities that exceed the Tufts University Radiation Safety Committee established radioactive material threshold limits. Other individuals who work in or adjacent to radiation sources but who are unlikely to exceed 10% of the annual occupational external dose limits do not need to be provided with personnel dosimeters. One practical way to confirm that these individuals do not exceed 10% of the dose limit in a year is to assign a proxy badge for an exposure group or assign an area badge. The potential for individuals to receive radiation dose varies considerably according to the type of radiation (alpha, beta, soft or hard, x-ray, gamma) and quantity (1uCi, 5mCi) of radioactivity they are exposed to. Monitoring for external radiation exposure is achieved at Tufts University by employing optically stimulated luminescent dosimeters (OSLD). These dosimeters are designed to monitor different types of radiation and energy spectra from impinging photons or particles while worn in radiation fields. The dosimeters are structured with different absorber thicknesses and materials to determine the radiation dose at comparable tissue depths of concern. For example, radiation dose can be assessed to the skin of the whole-body or extremities (shallow-dose equivalent, 0.07 cm depth in tissue), lens of the eye (lens dose equivalent, 0.3 cm depth in tissue), or whole-body (deep-dose equivalent, 1 cm depth in tissue). Radiation dose at Tufts University remains to be well below regulatory limits for researchers and medical staff. Radiation Safety staff are available to assist researchers and other groups that work with radioactive materials or radiation producing machines and to ensure exposure control measures are optimized and ALARA (as low as reasonably achievable) conditions exist. Please contact EHS for additional information or questions regarding proper use, placement, storage, pick-up schedules, lost, damaged, or contaminated dosimeters.
Shipping Lithium Batteries
By Kathleen Joseph

When the Federal Aviation Administration fines an institution of higher education for improper shipping, people notice - especially if the fine exceeds $100,000 and the institution is in Cambridge, MA.

The package was discovered on a moving conveyor belt in the Medford, MA FedEx sorting facility. Smoke and flames made it easy to find. The fire extinguisher couldn't put the fire out. It was determined that:

- The batteries were not packaged in a manner that would prevent short-circuiting
- The container was not properly labeled. (Hazard Class which is 9)
- The container was not properly marked. (Required sticker for lithium batteries not used.)

Lithium batteries are commonly used in mobile phones, laptops, watches, cameras and children’s toys. Lithium batteries have been responsible for over 40 reported incidents since 1990 involving smoke, fire, heat or explosions. Two pilots were killed in September 2010 when a UPS flight crashed near Dubai. FedEx now requires the shipper to ask for approval prior to shipping by FedEx Express. Regulations on shipping lithium batteries have been tightened and are expected to tighten again in 1/1/2013.

Autoclaves and their use for Biohazardous Waste
By Darin P. Goodwin

Autoclaves are sealed containers that heat water vapor to high temperatures in order to sterilize objects that might harbor biological hazards. When used properly, an autoclave can purify a device or container of any biological contaminants such as bacteria, mold and viruses.

Autoclaves operate on the principle that pathogens, like all organic matter, can be killed by prolonged exposure to high temperatures. This was first seized upon by Louis Pasteur, who developed a way to prevent wine from spoiling by briefly heating it almost to its boiling point. The high temperatures cause proteins and other building blocks of life to disintegrate or reconstitute, thus killing microbial organisms that might spread disease.

Autoclaves are often compared to pressure cookers because they often operate at very high internal pressures. This is because when water becomes steam it follows the Ideal Gas Law, which dictates that the pressure and volume of a gas are directly proportional to its mass and temperature. When water is heated to above 100 degrees Celsius in a confined volume, the pressure within the autoclave quickly increases. The increased pressure also forces the steam to pump through the chamber at a higher pressure than normal atmospheric pressure so it reaches a temperature of about 121-140°C (250-284°F). Once the required temperature is reached, a thermostat kicks in and starts a timer. The steam pumping continues for a minimum of about 3 minutes and a maximum of about 15-20 minutes (higher temperatures mean shorter times) - generally long enough to kill most microorganisms. The exact sterilizing time depends on a variety of factors, including the likely contamination level of the items being autoclaved (dirty items known to be contaminated will take longer to sterilize because they contain more microbes) and how the autoclave is loaded up (if steam can penetrate the bag and reach the materials within the bag and the pockets residing between the materials. If the bag remains tightly sealed it is unlikely the autoclave will have an effective cycle. The cycle times depend on the equipment and the material being processed. Cycle times for different machines needs to be validated. The MA Department of Public Health requires validating autoclaves used for treating Biomedical and Biological Waste on a quarterly basis. Cycles can run from 45 minutes to 90 minutes depending on the autoclave. Be sure to verify the effectiveness of the equipment being used for an effective “kill time”.

By Kathleen Joseph

When the Federal Aviation Administration fines an institution of higher education for improper shipping, people notice - especially if the fine exceeds $100,000 and the institution is in Cambridge, MA.

The package was discovered on a moving conveyor belt in the Medford, MA FedEx sorting facility. Smoke and flames made it easy to find. The fire extinguisher couldn't put the fire out. It was determined that:

- The batteries were not packaged in a manner that would prevent short-circuiting
- The container was not properly labeled. (Hazard Class which is 9)
- The container was not properly marked. (Required sticker for lithium batteries not used.)

Lithium batteries are commonly used in mobile phones, laptops, watches, cameras and children’s toys. Lithium batteries have been responsible for over 40 reported incidents since 1990 involving smoke, fire, heat or explosions. Two pilots were killed in September 2010 when a UPS flight crashed near Dubai. FedEx now requires the shipper to ask for approval prior to shipping by FedEx Express. Regulations on shipping lithium batteries have been tightened and are expected to tighten again in 1/1/2013.

Autoclaves are sealed containers that heat water vapor to high temperatures in order to sterilize objects that might harbor biological hazards. When used properly, an autoclave can purify a device or container of any biological contaminants such as bacteria, mold and viruses.

Autoclaves operate on the principle that pathogens, like all organic matter, can be killed by prolonged exposure to high temperatures. This was first seized upon by Louis Pasteur, who developed a way to prevent wine from spoiling by briefly heating it almost to its boiling point. The high temperatures cause proteins and other building blocks of life to disintegrate or reconstitute, thus killing microbial organisms that might spread disease.

Autoclaves are often compared to pressure cookers because they often operate at very high internal pressures. This is because when water becomes steam it follows the Ideal Gas Law, which dictates that the pressure and volume of a gas are directly proportional to its mass and temperature. When water is heated to above 100 degrees Celsius in a confined volume, the pressure within the autoclave quickly increases. The increased pressure also forces the steam to pump through the chamber at a higher pressure than normal atmospheric pressure so it reaches a temperature of about 121-140°C (250-284°F). Once the required temperature is reached, a thermostat kicks in and starts a timer. The steam pumping continues for a minimum of about 3 minutes and a maximum of about 15-20 minutes (higher temperatures mean shorter times) - generally long enough to kill most microorganisms. The exact sterilizing time depends on a variety of factors, including the likely contamination level of the items being autoclaved (dirty items known to be contaminated will take longer to sterilize because they contain more microbes) and how the autoclave is loaded up (if steam can penetrate the bag and reach the materials within the bag and the pockets residing between the materials. If the bag remains tightly sealed it is unlikely the autoclave will have an effective cycle. The cycle times depend on the equipment and the material being processed. Cycle times for different machines needs to be validated. The MA Department of Public Health requires validating autoclaves used for treating Biomedical and Biological Waste on a quarterly basis. Cycles can run from 45 minutes to 90 minutes depending on the autoclave. Be sure to verify the effectiveness of the equipment being used for an effective “kill time”.
03-19-12: NEO & BBP; 12:30-2:30
03-20-12: Intro Rad. Safety; 9:00-11:00
03-21-12: BRL Training; 1:00-3:00
04-02-12: NEO & BBP; 12:30-2:30
04-12-12: NEO & BBP; 12:00-1:00
04-17-12: Intro Rad. Safety; 9:00-11:00
04-17-12: BRL Training; 10:00-12:00
04-30-12: NEO & BBP; 12:30-2:30
05-02-12: BRL Training; 1:00-3:00
05-15-12: Intro Rad. Safety; 9:00-11:00
05-14-12: NEO & BBP; 12:30-2:30
05-17-12: Intro Laser Safety; 9:30-11:00
06-06-12: BRL Training; 1:00-3:00
06-22-12: BRL Training; 10:00-12:00
06-29-12: NEO & BBP; 12:30-2:30
06-06-12: NEO & BBP; 12:30-2:30
06-09-12: NEO & BBP; 12:30-2:30
06-09-12: Intro Rad. Safety; 9:00-11:00
06-25-12: NEO & BBP; 12:30-2:30
06-27-12: NEO & BBP; 12:30-2:30
07-07-12: BRL Training; 1:00-3:00
07-09-12: NEO & BBP; 12:30-2:30
07-09-12: Intro Rad. Safety; 9:00-11:00
07-09-12: NEO & BBP; 12:30-2:30
07-09-12: NEO & BBP; 10:00-12:00
07-10-12: NEO & BBP; 10:00-12:00
07-06-12: NEO & BBP; 10:00-12:00
08-01-12: Intro Radiation Safety; 12:00-1:30
08-02-12: BBP; 12:00-1:00
08-05-12: Biologicals Shipping; 9:30-12:00
08-04-12: BRL Training; 1:00-3:00
08-19-12: Intro Laser Safety; 9:30-11:00
05-03-12: Intro Radiation Safety; 12:00-1:30
05-09-12: BBP; 12:00-1:00
06-06-12: BRL Training; 10:00-12:00
06-07-12: Chemical Shipping; 9:30-12:00
06-21-12: Intro Laser Safety; 9:30-11:00
07-05-12: Intro Radiation Safety; 12:00-1:30
07-18-12: BBP; 12:00-1:00
08-15-12: BRL Training; 1:00-3:00
08-16-12: Intro Laser Safety; 9:30-11:00
09-06-12: Intro Radiation Safety; 12:00-1:30
09-12-12: BBP; 12:00-1:00
09-12-12: BBP; 12:00-1:00
09-12-12: BBP; 12:00-1:00

Dates subject to change based on attendance